2001
DOI: 10.1090/bull/2001-38-03
|View full text |Cite
|
Sign up to set email alerts
|

Untitled

Abstract: Abstract. This paper is a survey of research in discrete expansions over the last 10 years, mainly of functions in L 2 (R). The concept of an orthonormal basis {fn}, allowing every function f ∈ L 2 (R) to be written f = cnfn for suitable coefficients {cn}, is well understood. In separable Hilbert spaces, a generalization known as frames exists, which still allows such a representation. However, the coefficients {cn} are not necessarily unique. We discuss the relationship between frames and Riesz bases, a subje… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 20 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?