The influence of elevated water levels on wind field characteristics at bridge sites owing to hydroelectric power stations plays an important role in bridge engineering, particularly in mountainous valley regions. To investigate this issue, a comparative experimental study, which uses a topographic model with two water level states for determining the influence on wind field characteristics at the proposed bridge site located in a mountainous valley area, was conducted in the XNJD-3 wind tunnel at Southwest Jiaotong University, Chengdu, PR China. The altitude difference between the two water level states was approximately 200 m, whereas uniform and D-type boundary layer air inflow conditions were adopted during the wind tunnel test, respectively. The wind speed at the bridge girder and profile of the 1/4, mid, and 3/4 spans were recorded during the experiment. The test results indicated that after the water level was raised, the mean wind speed (or speed-up factor) along the bridge girder decreased by approximately 10%, and the values of the wind profile also decreased. However, the wind profile curve shapes remained approximately unchanged, and the wind attack angle was significantly transformed by approximately 5° in certain locations of the bridge girder. Moreover, the variation in the water level had a negligible influence on the turbulence intensities, turbulence integral length scales, probability distribution of fluctuating wind components, and turbulent wind spectra along the bridge girder. Therefore, as the water level in the canyon rises, the wind field characteristics at the bridge site tend to be conducive to bridge safety. Therefore, long-span bridges located in mountainous valley areas should be designed appropriately according to the expected minimum water level of the river.