2022
DOI: 10.1007/s11547-022-01551-z
|View full text |Cite
|
Sign up to set email alerts
|

3D-Arterial analysis software and CEUS in the assessment of severity and vulnerability of carotid atherosclerotic plaque: a comparison with CTA and histopathology

Abstract: Purpose Our purpose is to assess Multiparametric Ultrasound (MPUS) efficacy for evaluation of carotid plaque vulnerability and carotid stenosis degree in comparison with Computed Tomography angiography (CTA) and histology. Material and methods 3D-Arterial Analysis is a 3D ultrasound software that automatically provides the degree of carotid stenosis and a colorimetric map of carotid plaque vulnerability. We enrolled 106 patients who… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
5

Citation Types

0
15
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 13 publications
(15 citation statements)
references
References 77 publications
0
15
0
Order By: Relevance
“…Some promising tools in the diagnosis and follow-up of cancer patients who develop adverse reactions to treatments are artificial intelligence (AI) and radiomics [ 162 , 163 , 164 , 165 , 166 , 167 , 168 , 169 , 170 , 171 , 172 , 173 , 174 , 175 , 176 , 177 , 178 , 179 , 180 , 181 , 182 , 183 , 184 , 185 ]. Computers are able to accumulate and evaluate higher volumes of data compared to the human brain, so AI can resolve unsolved complexities in cancer patient management [ 162 , 163 , 164 , 165 , 166 , 167 , 168 , 169 , 170 , 171 , 172 , 173 , 174 , 175 , 176 , 177 , 178 , 179 , 180 , 181 , 182 , 183 , 184 , 185 ]. Machine learning (ML) is a sub-area of AI which uses mathematical algorithms and can learn specific tasks [ 162 , 163 , 164 ,…”
Section: Diagnostic Managementmentioning
confidence: 99%
See 4 more Smart Citations
“…Some promising tools in the diagnosis and follow-up of cancer patients who develop adverse reactions to treatments are artificial intelligence (AI) and radiomics [ 162 , 163 , 164 , 165 , 166 , 167 , 168 , 169 , 170 , 171 , 172 , 173 , 174 , 175 , 176 , 177 , 178 , 179 , 180 , 181 , 182 , 183 , 184 , 185 ]. Computers are able to accumulate and evaluate higher volumes of data compared to the human brain, so AI can resolve unsolved complexities in cancer patient management [ 162 , 163 , 164 , 165 , 166 , 167 , 168 , 169 , 170 , 171 , 172 , 173 , 174 , 175 , 176 , 177 , 178 , 179 , 180 , 181 , 182 , 183 , 184 , 185 ]. Machine learning (ML) is a sub-area of AI which uses mathematical algorithms and can learn specific tasks [ 162 , 163 , 164 ,…”
Section: Diagnostic Managementmentioning
confidence: 99%
“…Computers are able to accumulate and evaluate higher volumes of data compared to the human brain, so AI can resolve unsolved complexities in cancer patient management [ 162 , 163 , 164 , 165 , 166 , 167 , 168 , 169 , 170 , 171 , 172 , 173 , 174 , 175 , 176 , 177 , 178 , 179 , 180 , 181 , 182 , 183 , 184 , 185 ]. Machine learning (ML) is a sub-area of AI which uses mathematical algorithms and can learn specific tasks [ 162 , 163 , 164 , 165 , 166 , 167 , 168 , 169 , 170 , 171 , 172 , 173 , 174 , 175 , 176 , 177 , 178 , 179 , 180 , 181 , 182 , 183 , 184 , 185 ]. These models are supervised and unsupervised, depending on the knowledge of the desired outcome of interest [ 162 , 163 , 164 , 165 ,…”
Section: Diagnostic Managementmentioning
confidence: 99%
See 3 more Smart Citations