Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The aim of this research was to numerically reproduce bedload transport processes in channel bifurcations and thereby evaluate the methodology and feasibility of 3D-computational fluid dynamics (CFD) bedload transport simulations. This was carried out by numerically replicating two physical model investigations of channel bifurcations: research conducted by Bulle in 1926 and a large-scale channel bifurcation investigated at the Kassel University hydraulic laboratory. The numerical results were evaluated by comparing bedload distributions in the channel areas, formations of bedload depositions and development of bedload over time. The numerical simulations of Bulle's model were conducted for different boundary conditions, numerical parameters, sediment grain sizes, flow rates, flow distributions on the two channel branches and for longer running simulations. The investigations of the Kassel University bifurcation were carried out for different sediment types, which influences the numerical parameters, as well as for different flow distributions and channel width/depth ratios. Finally, structures for deflection of bedload into the straight channel were investigated. The results showed that bedload movement can be successfully simulated with 3D-CFD models, even in complex hydraulic conditions. Based on the obtained results, important indicators and recommendations for the application of 3D-CFD bedload transport simulations were acquired.
The aim of this research was to numerically reproduce bedload transport processes in channel bifurcations and thereby evaluate the methodology and feasibility of 3D-computational fluid dynamics (CFD) bedload transport simulations. This was carried out by numerically replicating two physical model investigations of channel bifurcations: research conducted by Bulle in 1926 and a large-scale channel bifurcation investigated at the Kassel University hydraulic laboratory. The numerical results were evaluated by comparing bedload distributions in the channel areas, formations of bedload depositions and development of bedload over time. The numerical simulations of Bulle's model were conducted for different boundary conditions, numerical parameters, sediment grain sizes, flow rates, flow distributions on the two channel branches and for longer running simulations. The investigations of the Kassel University bifurcation were carried out for different sediment types, which influences the numerical parameters, as well as for different flow distributions and channel width/depth ratios. Finally, structures for deflection of bedload into the straight channel were investigated. The results showed that bedload movement can be successfully simulated with 3D-CFD models, even in complex hydraulic conditions. Based on the obtained results, important indicators and recommendations for the application of 3D-CFD bedload transport simulations were acquired.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.