DOI: 10.36939/ir.202206021141
|View full text |Cite
|
Sign up to set email alerts
|

3D Convolutional Neural Networks for Solving Complex Digital Agriculture and Medical Imaging Problems

Abstract: 3D signals have become widely popular in view of the advantage they provide via 3D representations of data by employing a third spatial or temporal dimension to extend 2D signals. Predominantly, 3D signals contain details inexistent in their 2D counterparts such as the depth of an image, which is inherent to point clouds (PC), or the temporal evolution of an image, which is inherent to time series data such as videos. Despite this advantage, 3D models are still underexploited in machine learning (ML) compared … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 76 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?