The environmental and economical merits of converting solar energy into electricity via photovoltaic cells have caused an ever increasing interest among developed and developing countries to allocate more budget on photovoltaic systems in order to boost up their efficiency in recent years. Besides the material and design parameters, there are several external factors such as magnetic field, air mass, intense light, external electric field, solar spectrum…. that can influence the PV cell's performance. There have been a handful of studies conducted on the effect of various influential parameters on the efficiency and performance of photovoltaic cells; however none has taken these two parameters (magnetic field and air mass) into account simultaneously. In this 3D study the effects of magnetic field and the air mass illumination on space charge region width extension of a bifacial polycristalline solar cell front side illumination will be elaborated. Based on the columnar model of the grain and the quasi-neutral base, the continuity equation is established and the boundaries conditions are defined in order to use Green's functions to solve this equation. New analytical expression of charge carriers' density is found and the diffusion capacitance to the junction is calculated. The normalized carriers' density plot versus base depth and magnetic field with various air mass illumination are presented and analyzed. The effects of magnetic field and air mass illumination on space charge region width extension are then deducted. The influences of magnetic field and air mass illumination on the junction capacitance and on the reverse of junction capacitance are also shown and analyzed.