3D EAGAN: 3D edge-aware attention generative adversarial network for prostate segmentation in transrectal ultrasound images
Mengqing Liu,
Xiao Shao,
Liping Jiang
et al.
Abstract:Background
The segmentation of prostates from transrectal ultrasound (TRUS) images is a critical step in the diagnosis and treatment of prostate cancer. Nevertheless, the manual segmentation performed by physicians is a time-consuming and laborious task. To address this challenge, there is a pressing need to develop computerized algorithms capable of autonomously segmenting prostates from TRUS images, which sets a direction and form for future development. However, automatic prostate segmentation … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.