Superhalo electrons appear to be continuously present in the interplanetary medium, even at very quiet times, with a power-law spectrum at energies above ∼2 keV.Here we numerically investigate the generation of superhalo electrons by magnetic reconnection in the solar wind source region, using the MHD and test particle simulations for both single X-line reconnection and multiple X-line reconnection. We find that the direct current electric field, produced in the magnetic reconnection region, can accelerate electrons from an initial thermal energy of T ∼ 10 5 K up to hundreds of keV. After acceleration, some of the accelerated electrons, together with the nascent solar wind flow driven by the reconnection, propagate upwards along the newly-opened magnetic field lines into the interplanetary space, while the rest move downwards into the lower atmosphere. Similar to the observed superhalo electrons at 1 AU, the flux of the upward-traveling accelerated electrons versus energy displays a power-law distribution at ∼ 2 − 100 keV, f (E) ∼ E −δ , with a δ of ∼ 1.5 − 2.4. For single (multiple) X-line reconnection, the spectrum becomes harder (softer) as the anomalous resistivity parameter α (uniform resistivity η) increases. These modeling results suggest that the acceleration in the solar wind source region may contribute to superhalo electrons.