This paper presents an analysis of the fracture accident of a cylindrical roller bearing cage used in a charging pump in a nuclear power plant. The causes and mechanisms of bearing cage breakage were investigated by material failure analysis and simulation calculations. Macroscopic observation results confirmed that the cage fracture occurred at the stress concentration position. The microfracture morphology of the cage obtained from scanning electron microscopy showed a fatigue feature. The analysis of residual stress indicated large residual stress perpendicular to the fracture surface. The finite element calculation showed that when the bearing was moving in and out of the working area during operation, large working stress appeared at the stress concentration position. Working stress and residual stress acted together, approaching the fatigue limit of materials, and finally led to the cage fatigue fracture. The stress of the other two structural cages of the same type of bearing was also calculated, and no such large stress concentration was identified; thus, one plastic cage was temporarily used.