This study examines the impact of cutting parameters on the fatigue properties of FeCoCrNiAl0.6 high‐entropy alloy under bi‐directional micro‐cutting. Utilizing Abaqus/fe−safe for analysis, we evaluated surface roughness, internal stress distribution, and fatigue longevity. Enhanced cutting speed resulted in smoother surfaces, whereas increased cut depth intensified surface roughness. Optimal cutting at 60,000 mm/min and 40 μm depth yielded a notable 91% rise in compressive stress (207 MPa) compared to slower speeds (108 MPa at 30,000 mm/min). Yield strength remained stable at 700 MPa across conditions. Fatigue resistance improved post‐bi‐directional cutting, with a 21.8–26.6% boost in life cycles, highlighting a consistent 10% advantage over single‐direction cutting.