2019
DOI: 10.3390/rs11212545
|View full text |Cite
|
Sign up to set email alerts
|

3D GPR Image-based UcNet for Enhancing Underground Cavity Detectability

Abstract: This paper proposes a 3D ground penetrating radar (GPR) image-based underground cavity detection network (UcNet) for preventing sinkholes in complex urban roads. UcNet is developed based on convolutional neural network (CNN) incorporated with phase analysis of super-resolution (SR) GPR images. CNNs have been popularly used for automated GPR data classification, because expert-dependent data interpretation of massive GPR data obtained from urban roads is typically cumbersome and time consuming. However, the con… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

2
11
0
2

Year Published

2020
2020
2024
2024

Publication Types

Select...
8
1
1

Relationship

1
9

Authors

Journals

citations
Cited by 41 publications
(15 citation statements)
references
References 23 publications
2
11
0
2
Order By: Relevance
“…Существенно возросло число новаций и в камеральной обработке георадарных данных, прежде всего с реализацией трехмерных систем (M. Kang, N. Kim, S. Im, J. Lee, Y. An [245]).…”
Section: современные тенденции георадарных исследованийunclassified
“…Существенно возросло число новаций и в камеральной обработке георадарных данных, прежде всего с реализацией трехмерных систем (M. Kang, N. Kim, S. Im, J. Lee, Y. An [245]).…”
Section: современные тенденции георадарных исследованийunclassified
“…An open source software, "gprMax" [23], is a favorable option to generate GPR profiles. It numerically solves Maxwell's equations by the Finite-Difference Time-Domain method [24] and offers advanced subterranean modeling, succeeding in both academic and industrial applications [25][26][27]. In this research, we simulated a stochastic number (range: 0-16) of cylinder pipelines (random diameters ranging from 5 to 40 cm) buried randomly inside a 2 m × 1 m subsurface domain and then produced 40 such GPR profiles (a non-intensive dataset) with downsampled data resolution 400 × 448.…”
Section: Data Descriptionmentioning
confidence: 99%
“…After space, aeronautical, marine, and land-based applications, it is now the turn of the subsurface application. Kang et al [14] proposed a three-dimensional underground cavity detection network (UcNet) to prevent the collapse of furrows in complex urban roads based on radar images (GPR). UcNet is being developed based on a convulsive neural network (CNN) integrated with the phase analysis of super-resolution GPR images.…”
Section: Radar Imaging and Processingmentioning
confidence: 99%