This paper describes the use of electro-hydrodynamic actuation to control the transition between three major flow patterns of an aqueous-oil Newtonian flow in a microchannel: droplets, beads-on-a-string (BOAS), and multi-stream laminar flow. We observed interesting transitional flow patterns between droplets and BOAS as the electric field was modulated. The ability to control flow patterns of a two-phase fluid in a microchannel adds to the microfluidic tool box and improves our understanding of this interesting fluid behavior. 1,2 In recent years, there has been increasing interest in two-phase flow and droplet microfluidics, owing to their potential for providing a high-throughput platform for carrying out chemical and biological analysis and manipulations.3-8 Although droplets may be generated in many different ways, such as with electric fields or extrusion through a small nozzle, 9-12 the most common microfluidic methods are based on the use of either T-junctions or flow-focusing geometries with which uniform droplets can be formed at high frequency in a steady-state fashion. 13,14 Various operations, such as cell encapsulation, droplet fusion, splitting, mixing, and sorting, have also been developed, and these systems have been demonstrated for a wide range of applications, including cell analysis, protein crystallization, and material synthesis.