Abstract-In this paper, we propose a novel predictive model, Active Volume Model (AVM), for object boundary extraction. It is a dynamic "object" model whose manifestation includes a deformable curve or surface representing a shape, a volumetric interior carrying appearance statistics, and an embedded classifier that separates object from background based on current feature information. The model focuses on an accurate representation of the foreground object's attributes, and does not explicitly represent the background. As we will show, however, the model is capable of reasoning about the background statistics thus can detect when is change sufficient to invoke a boundary decision. When applied to object segmentation, the model alternates between two basic operations: (1) deforming according to current Region of Interest (ROI), which is a binary mask representing the object region predicted by the current model, and (