Fluid-structure interaction (FSI) is a frequent and unstable inherent phenomenon in water conveyance systems. Especially in a system with a surge chamber, valve closing and the subsequent water level oscillation in the surge chamber are the excitation source of the hydraulic transient process. Water-hammer-induced FSI has not been considered in preceding research, and the results without FSI justify further investigations. In this study, an FSI eight-equation model is presented to capture its influence. Both the elbow pipe and surge chamber are treated as boundary conditions, and solved using the finite volume method (FVM). After verifying the feasibility of using FVM to solve FSI, friction, Poisson, and junction couplings are discussed in detail to separately reveal the influence of a surge chamber, tow elbows, and a valve on FSI. Results indicated that the major mechanisms of coupling are junction coupling and Poisson coupling. The former occurs in the surge chamber and elbows. Meanwhile, a stronger pressure pulsation is produced at the valve, resulting in a more complex FSI response in the water conveyance system. Poisson coupling and junction coupling are the main factors contributing to a large amount of local transilience emerging on the dynamic pressure curves. Moreover, frictional coupling leads to the lower amplitudes of transilience. These results indicate that the transilience is induced by the water hammer-structure interaction and plays important roles in the orifice optimization in the surge chamber.Keywords: fluid-structure interaction; pipe flow; finite volume method; water hammer; transient flow
IntroductionPipes conveying fluid are prevalent in many fields, including marine, civil engineering, nuclear power industries, petroleum, and water conservancy systems in daily life [1]. As an inherent phenomenon, fluid-structure interaction (FSI) always occurs in water conveyance pipelines [2][3][4]. Because of the existence of FSI, those pipes with few supports or thin walls show poor robustness, where the FSI of pipes is enhanced [5]. Therefore, the FSI responses must be considered when analyzing the characteristics of water conveyance systems [6]. The types of coupling that occur between the pipeline and fluid mainly include friction coupling, Poisson coupling, and junction coupling, among which the former two coupling take place throughout the whole pipeline. However, the last one only happens locally in pipes, including in elbows, branches, valves, boundaries, and variable cross sections [7], where the system coupling is much stronger [8]. Amongst these three coupling forms, friction coupling has the weakest response and shows changes in its magnitude over a long period [9]. Meanwhile, as the most important coupling form, junction coupling produces a pressure head larger Water 2020, 12, 1025 2 of 18 than the classical water hammer, and greatly depends on the robustness of the system [10]. Poisson coupling and friction coupling can greatly influence junction coupling, and, in turn, junction coupling ...