The Monteith Formation is an important tight gas reservoir in the Deep Basin, Alberta, and consists of a progradational succession of shallow marine sediments, nonmarine carbonaceous and coaly, coastal plain facies, and coarse-grained fluvial deposits, from base to top, respectively. This study is based on multiscale description and characterization techniques with cores and drill cuttings, including multimethods laboratory measurements of key reservoir parameters such as porosity and permeability. A second stage of the study involves the use of laboratory measurements obtained from cores and drill cuttings and their integration with well logs to construct a numerical 3D model of the study area. The 3D model is used to history match gas production, and forecast performance of new wells in those areas where the geologic model indicates potential for gas production.The ultimate goal is to provide a better understanding of the distribution of reservoir properties in the study area for developing drilling prospects and their production potential in areas where reliable data are scarce. The reservoir-modeling stage is carried out by implementing a recently developed methodology that integrates a variable shape distribution (VSD) model, capable of capturing different reservoir properties throughout the whole scale spectrum without any data truncation. Truncation is the excuse generally used for eliminating information that does not fit a given distribution. The claim is that the data are of poor quality, something that is not true in many cases. This new methodology eliminates the need for truncation, and introduces an extension of the VSD approach for reservoir-simulation purposes that reduces uncertainty in the generation of drilling prospects.Core analysis shows that the Monteith A member is composed of complex fluvial-dominated deposits with better rock quality than the shallow marine sandstones of the Monteith C member. This is most likely because of larger pore-throat apertures that range between 0.5 and 1 lm, and a relatively higher proportion of preserved intergranular pore space within these coarser-grained framework grains. Furthermore, the best production performance is from wells that are producing from the Monteith A. Variability of production rates also seems to be controlled by the presence of natural fractures. It is anticipated that the resulting 3D reservoir model will allow improving field-development strategies for this and other similar unconventional gas reservoirs in the Deep Basin of Alberta and elsewhere.