Producing food in a sustainable way is becoming very challenging today due to the lack of skilled labor, the unaffordable costs of labor when available, and the limited returns for growers as a result of low produce prices demanded by big supermarket chains in contrast to ever-increasing costs of inputs such as fuel, chemicals, seeds, or water. Robotics emerges as a technological advance that can counterweight some of these challenges, mainly in industrialized countries. However, the deployment of autonomous machines in open environments exposed to uncertainty and harsh ambient conditions poses an important defiance to reliability and safety. Consequently, a deep parametrization of the working environment in real time is necessary to achieve autonomous navigation. This paper proposes a navigation strategy for guiding a robot along vineyard rows for field monitoring. Given that global positioning cannot be granted permanently in any vineyard, the strategy is based on local perception, and results from fusing three complementary technologies: 3D vision, lidar, and ultrasonics. Several perception-based navigation algorithms were developed between 2015 and 2019. After their comparison in real environments and conditions, results showed that the augmented perception derived from combining these three technologies provides a consistent basis for outlining the intelligent behavior of agricultural robots operating within orchards.