Glucose is a ubiquitous source of energy for nearly all living things, and glucose fuel cells (GFCs) are regarded as a sustainable power source because glucose is renewable, easily available, cheap, abundant, non-toxic and easy-to-store. Numerous efforts have been devoted to developing and improving GFC performance; however, there is still no commercially viable devices on the market. Membranes play an essential role in GFCs for the establishment of a suitable local microenvironment, selective ion conducting and prevention of substrate crossover. However, our knowledge on them is still limited, especially on how to achieve comparable efficacy with that of a biological system. This review article provides the first brief overview on these aspects, particularly keeping in sight the research trends, current challenges, and the future prospects. We aim to bring together literature analysis and technological discussion on GFCs and membranes by using bibliometrics, and provide new ideas for researchers in this field to overcome challenges on developing high-performance GFCs.