In many fused filament fabrication (FFF) processes, commercial printers are used, but rarely are printer settings transferred from one commercial printer to the other to give similar final tensile part performance. Here, we report such translation going from the Felix 3.0 to Prusa i3 MK3 printer by adjusting the flow rate and overlap of strands, utilizing an in-house developed blend of polylactic acid (PLA) and poly(butylene adipate-co-terephthalate) (PBAT). We perform a sensitivity analysis for the Prusa printer, covering variations in nozzle temperature, nozzle diameter, layer thickness, and printing speed (Tnozzle, dnozzle, LT, and vprint), aiming at minimizing anisotropy and improving interlayer bonding. Higher mass, larger width, and thickness are obtained with larger dnozzle, lower vprint, higher LT, and higher Tnozzle. A higher vprint results in less tensile strain at break, but it remains at a high strain value for samples printed with dnozzle equal to 0.5 mm. vprint has no significant effect on the tensile modulus and tensile and impact strength of the samples. If LT is fixed, an increased dnozzle is beneficial for the tensile strength, ductility, and impact strength of the printed sample due to better bonding from a wider raster structure, while an increased LT leads to deterioration of mechanical properties. If the ratio dnozzle/LT is greater than 2, a good tensile performance is obtained. An improved Tnozzle leads to a sufficient flow of material, contributing to the performance of the printed device. The considerations brought forward result in a deeper understanding of the FFF process and offer guidance about parameter selection. The optimal dnozzle/vprint/LT/Tnozzle combination is 0.5 mm/120 mm s−1/0.15 mm/230 °C.