Aims: Intracardiac echocardiography (ICE) is a relatively young technique used during complex electrophysiology proce-dures, such as atrial fibrillation (AF) ablation. The aim of this study was to assess whether the use of ICE modifies the radia-tion exposure at the beginning of the learning curve in AF ablation. Materials and methods: In this retrospective study, 52 patients, in which catheter ablation for paroxysmal or persistent AF was performed, were included. For 26 patients we used ICE guidance together with fluoroscopy, whereas for the remaining 26 patients we used fluoroscopy alone, all supported by electroanatomical mapping. We compared total procedure time and radiation exposure, including fluoroscopy dose and time between the two groups and along the learning curve. Results: Most of the patients included were suffering from paroxysmal AF (40, 76%), pulmonary vein isolation being performed in all patients, without secondary ablation sites. The use of ICE was associated with a lower fluoroscopy dose (11839.60±6100.6 vs. 16260.43±8264.5 mGy, p=0.041) and time (28.00±12.5 vs. 42.93±12.7 minutes, p=0.001), whereas the mean procedure time was similar between the two groups (181.54±50.3 vs 197.31±49.8 minutes, p=0.348). Radiation exposure was lower in the last 9 months compared to the first 9 months of the study (p<0.01), decreasing gradually along the learning curve. Conclusions: The use of ICE lowers radiation exposure in AF catheter ablation from the beginning of the learning curve, without any difference in terms of acute safety or efficacy. Aware-ness towards closest to zero radiation exposure during electrophysiology procedures should increase in order to achieve better protection for both patient and medical staff.