Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
This paper proposes a drop-on-demand (DOD) system that can produce single droplets of highly repeatable size in the order of 2 mm. This system utilizes an on-the-shelf solenoid injector used in automotive applications. The design methodology is explained along with the necessary measurements and numerical simulations of droplet generation. The invention consists of a solenoid injector that produces monodisperse single or in-series droplets with the help of a developed pulse width modulated signal generator. Mass per injection is measured over a range of supply pressures and injection durations to find the operation window to generate 2 mm droplets. Later, various nozzle geometries are designed and tested by flow simulations. The contracting nozzle is found suitable for generating single droplets, so the design is implemented at the tip of the solenoid injector. The effects of different opening times, pressures, and nozzle’s orifice diameters were tested to observe the operating window of the newly designed DOD system and the repeatability of generated droplets by utilizing a coherent circular Hough transform image processing algorithm to measure droplet sizes. The standard deviation of measured diameters is less than 5% of the mean droplet diameter, which is in the range of 1.68–2.07 mm. Next, the voltage and current signals are measured per injection, and exact instants for the initiation and ending for both opening and closing are determined to construct transient mass flow rate functions for flow simulations in which the dependence of droplet formation on the speed of closing is revealed. The numerical and experimental results indicate the repeatability and consistency of the invention.
This paper proposes a drop-on-demand (DOD) system that can produce single droplets of highly repeatable size in the order of 2 mm. This system utilizes an on-the-shelf solenoid injector used in automotive applications. The design methodology is explained along with the necessary measurements and numerical simulations of droplet generation. The invention consists of a solenoid injector that produces monodisperse single or in-series droplets with the help of a developed pulse width modulated signal generator. Mass per injection is measured over a range of supply pressures and injection durations to find the operation window to generate 2 mm droplets. Later, various nozzle geometries are designed and tested by flow simulations. The contracting nozzle is found suitable for generating single droplets, so the design is implemented at the tip of the solenoid injector. The effects of different opening times, pressures, and nozzle’s orifice diameters were tested to observe the operating window of the newly designed DOD system and the repeatability of generated droplets by utilizing a coherent circular Hough transform image processing algorithm to measure droplet sizes. The standard deviation of measured diameters is less than 5% of the mean droplet diameter, which is in the range of 1.68–2.07 mm. Next, the voltage and current signals are measured per injection, and exact instants for the initiation and ending for both opening and closing are determined to construct transient mass flow rate functions for flow simulations in which the dependence of droplet formation on the speed of closing is revealed. The numerical and experimental results indicate the repeatability and consistency of the invention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.