The Czochralski (CZ) growth technique is widely applied in crystal growth, using both induction and resistance heaters. In this work, a novel model experiment platform with comprehensive in-situ measurement capability is introduced. Growth experiments with the model material tin applying both heating concepts are performed and analyzed, e.g., in terms of the maximum achievable crystal diameter. Strong asymmetries in the magnetic field of the induction heater are measured and temperature distribution on the resistance heater is found to be non-uniform. Furthermore, significant losses are observed in the power supplies of the resistance heater. The heating efficiency of both concepts is compared considering different insulation geometries. The obtained results show the capability of model experiments for design optimization and will provide valuable input for further validation of numerical simulations.