Binding reaction kinetics of analyte-ligand at the level of a sensitive membrane into a microchannel of a biosensor has been limited by the formation of the boundary diffusion layer. Therefore, the response time increases and affects the overall performance of a biosensor. In the present work, we develop an approach to engineer fluid streams into a complex configuration in order to improve the binding efficiency. We investigate numerically the flow deformations around a parallelepiped with square cross-section inside the microfluidic channel and exploit these deformations to simulate the analyte transport to the sensitive membrane and enhance both association and dissociation processes. The effect of several parameters on the binding reaction is provided such as: the obstacle location from the inlet of the microchannel, the average flow velocity, and the inlet analyte concentration. The optimal position of the obstacle is determined. An appropriate choice of the inlet flow velocity and inlet analyte concentration may reduce significantly the response time.