This study presents computer vision modules of a multi‐unmanned aerial vehicle (UAV) system, which scored gold, silver, and bronze medals at the Mohamed Bin Zayed International Robotics Challenge 2017. This autonomous system, which was running completely on board and in real time, had to address two complex tasks in challenging outdoor conditions. In the first task, an autonomous UAV had to find, track, and land on a human‐driven car moving at 15 km/hr on a figure‐eight‐shaped track. During the second task, a group of three UAVs had to find small colored objects in a wide area, pick them up, and deliver them into a specified drop‐off zone. The computer vision modules presented here achieved computationally efficient detection, accurate localization, robust velocity estimation, and reliable future position prediction of both the colored objects and the car. These properties had to be achieved in adverse outdoor environments with changing light conditions. Lighting varied from intense direct sunlight with sharp shadows cast over the objects by the UAV itself, to reduced visibility caused by overcast to dust and sand in the air. The results presented in this paper demonstrate good performance of the modules both during testing, which took place in the harsh desert environment of the central area of United Arab Emirates, as well as during the contest, which took place at a racing complex in the urban, near‐sea location of Abu Dhabi. The stability and reliability of these modules contributed to the overall result of the contest, where our multi‐UAV system outperformed teams from world’s leading robotic laboratories in two challenging scenarios.