The adoption of computerized tomography (CT) technology has significantly elevated the role of pulmonary CT imaging in diagnosing and treating pulmonary diseases. However, challenges persist due to the complex relationship between lesions within pulmonary tissue and the surrounding blood vessels. These challenges involve achieving precise three-dimensional reconstruction while maintaining accurate relative positioning of these elements. To effectively address this issue, this study employs a semi-automatic precise labeling process for the target region. This procedure ensures a high level of consistency in the relative positions of lesions and the surrounding blood vessels. Additionally, a morphological gradient interpolation algorithm, combined with Gaussian filtering, is applied to facilitate high-precision three-dimensional reconstruction of both lesions and blood vessels. Furthermore, this technique enables post-reconstruction slicing at any layer, facilitating intuitive exploration of the correlation between blood vessels and lesion layers. Moreover, the study utilizes physiological knowledge to simulate real-world blood vessel intersections, determining the range of blood vessel branch angles and achieving seamless continuity at internal blood vessel branch points. The experimental results achieved a satisfactory reconstruction with an average Hausdorff distance of 1.5 mm and an average Dice coefficient of 92%, obtained by comparing the reconstructed shape with the original shape,the approach also achieves a high level of accuracy in three-dimensional reconstruction and visualization. In conclusion, this study is a valuable source of technical support for the diagnosis and treatment of pulmonary diseases and holds promising potential for widespread adoption in clinical practice.