In recent years, the ecosystem has been seriously affected by sewage discharge and oil spill accidents. A series of issues (such as the continuous pollution of the ecological environment and the imminent exhaustion of freshwater resources) are becoming more and more unmanageable, resulting in a crisis of water quality and quantity. Therefore, studies on industrial wastewater purification and solar-driven seawater desalination based on wood composites have been widely considered as an important development direction. This paper comprehensively analyzes and summarizes the applications of wood composites in the fields of solar-driven seawater desalination and polluted water purification. In particular, the present situation of industrial wastewater containing heavy metal ions, microorganisms, aromatic dyes and oil stains and related problems of solar-driven seawater desalination are comprehensively analyzed and summarized. Generally, functional nanomaterials are loaded into the wood cell wall, from which lignin and hemicellulose are selectively removed. Alternatively, functional groups are modified on the basis of the molecular structure of the wood microchannels. Due to its three-dimensional (3D) pore structure and low thermal conductivity, wood is an ideal substrate material for industrial wastewater purification and solar-driven seawater desalination. Based on the study of objective conditions such as the preparation process, modification method and selection of photothermal conversion materials, the performances of the wood composites in filtration, adsorption and seawater desalination are analyzed in detail. In addition, this work points out the problems and possible solutions in applying wood composites to industrial wastewater purification and solar-driven seawater desalination.