A fundamental question in biology is how morphogenesis integrates the multitude of distinct processes that act at different scales, ranging from the molecular control of gene expression to cellular coordination in a tissue. Investigating morphogenesis of complex organs strongly benefits from three-dimensional representations of the organ under study. Here, we present a digital analysis of ovule development from Arabidopsis thaliana as a paradigm for a complex morphogenetic process. Using machine-learning-based image analysis we generated a three-dimensional atlas of ovule development with cellular resolution. It allows quantitative stage- and tissue-specific analysis of cellular patterns. Exploiting a fluorescent reporter enabled precise spatial determination of gene expression patterns, revealing subepidermal expression of WUSCHEL. Underlying the power of our approach, we found that primordium outgrowth progresses evenly, discovered a novel mode of forming a new cell layer, and detected a new function of INNER NO OUTER in restricting cell proliferation in the nucellus. Moreover, we identified two distinct subepidermal cell populations that make crucial contributions to ovule curvature. Our work demonstrates the expedience of a three-dimensional digital representation when studying the morphogenesis of an organ of complex cellular architecture and shape that eventually consists of 1,900 cells.