BackgroundThe spiro- indole-pyrrolidine ring system is a frequently encountered structural motif in many biologically important and pharmacologically relevant alkaloids. The derivatives of spirooxindole ring systems are used as antimicrobial, antitumour agents and as inhibitors of the human NKI receptor besides being found in a number of alkaloids like horsifiline, spirotryprostatin and (+) elacomine. The recently discovered small-molecule MDM2 inhibitor MI-219 and its analogues are in advanced preclinical development as cancer therapeutics.ResultsIn the crystal structures of the two organic compounds, 4'-Nitro-3',5'-diphenylspiro[indoline-3,2'-pyrrolidin]-2-one and 3'-(4-Methoxyphenyl)- 4'-nitro -5'-phenylspiro[indoline-3,2'-pyrrolidin]-2-one, N-H···O hydrogen bonds make the R22 (8) ring motif. Further, the structures are stabilized by intermolecular hydrogen bonds.ConclusionThe crystal structures of 4'-Nitro-3',5'-diphenylspiro[indoline-3,2'-pyrrolidin]-2-one and 3'-(4-Methoxyphenyl)- 4'-nitro -5'-phenylspiro[indoline-3,2'-pyrrolidin]-2-one have been investigated in detail. In both the compounds, the R22(8) motif is present. Due to the substitution of methoxyphenyl instead of phenyl ring, the entire configuration is inverted with respect to the 2-oxyindole ring.