The precise regulation of protein activity is fundamental to life. The allosteric control of an active site by a remote regulatory binding site is a mechanism of regulation found across protein classes, from enzymes to motors to signaling proteins. We describe a general approach for manipulating allosteric control using synthetic optical switches. Our strategy is exemplified by a ligand-gated ion channel of central importance in neuroscience, the ionotropic glutamate receptor (iGluR). Using structure-based design, we have modified its ubiquitous clamshell-type ligand-binding domain to develop a light-activated channel, which we call LiGluR. An agonist is covalently tethered to the protein through an azobenzene moiety, which functions as the optical switch. The agonist is reversibly presented to the binding site upon photoisomerization, initiating clamshell domain closure and concomitant channel gating. Photoswitching occurs on a millisecond timescale, with channel conductances that reflect the photostationary state of the azobenzene at a given wavelength. Our device has potential uses not only in biology but also in bioelectronics and nanotechnology.Many proteins function like molecular machines that undergo mechanical movements in response to input signals. These signals can consist of changes in voltage, membrane tension, temperature or, most commonly, ligand concentration. Ligands provide information about events in the external world or about the energetic or biosynthetic state of the cell. They can be as small as a proton or as large as a whole protein. In allostery, ligand binding induces a structural change of a sensor domain, which propagates to a functional domain of the protein and alters its behavior. Such conformational control can operate over long distances, crossing a membrane or passing from one protein to another in a complex.Reengineering of nanoscopic protein machines to contain artificial control elements would be a major benefit for biology and technology. Optical switches would be especially powerful, as they could be activated remotely with precise temporal and spatial control 1,2 . A simple design Correspondence should be addressed to E.I. (ehud@berkeley.edu) and D.T. (trauner@berkeley.edu).. 5 These authors contributed equally to this work.Note: Supplementary information is available on the Nature Chemical Biology website.
COMPETING INTERESTS STATEMENTThe authors declare that they have no competing financial interests.
NIH Public Access
NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author Manuscript strategy would be to modify a protein by attaching a synthetic ligand whose binding ability could be altered by light. These ligands tethered via an optical switch could function in two ways. They could conditionally block the active site of an enzyme or the pore of a channel without inducing major conformational changes in the protein, or they could reversibly present an agonist to an allosteric binding site and conditionally trigger the normal conformational changes of ac...