Cavity enhanced absorption measurements have been made of several species that absorb light between 1.5 and 1.7 mm using both a supercontinuum source and superluminescent light emitting diodes. A system based upon an optical enhancement cavity of relatively high finesse, consisting of mirrors of reflectivity $99.98%, and a Fourier transform spectrometer, is demonstrated. Spectra are recorded of isoprene, butadiene, acetone and methane, highlighting problems with spectral interference and unambiguous concentration determinations. Initial results are presented of acetone within a breath-like matrix indicating ppm precision at <$10 ppm acetone levels. Instrument sensitivities are sufficiently enhanced to enable the detection of atmospheric levels of methane. Higher detection sensitivities are achieved using the supercontinuum source, with a minimum detectable absorption coefficient of $4 Â 10 À9 cm À1 reported within a 4 min acquisition time. Finally, two superluminescent light emitting diodes are coupled together to increase the wavelength coverage, and measurements are made simultaneously on acetylene, CO 2 , and butadiene. The absorption cross-sections for acetone and isoprene have been measured with an instrumental resolution of 4 cm À1 and are found to be 1.3 AE 0.1 Â 10 À21 cm 2 at a wavelength of 1671.9 nm and 3.6 AE 0.2 Â 10 À21 cm 2 at 1624.7 nm, respectively.