We report a resonant inelastic x-ray scattering (RIXS) study of crystalline CeB(6). Ce L(α1,2) RIXS was measured with excitation energies resonant with the Ce L(3)-edge. A lifetime-broadening suppressed x-ray absorption near-edge structure (LBS-XANES), which successfully reproduced the L(α1,2) RIXS spectra over wide ranges of excitation and emission energies, was simulated using the SIM-RIXS program. A pre-edge structure in the LBS-XANES can be resolved, and many-body effects were suggested in the L(α1,2) RIXS around the Ce L(3)-edge energy. No convincing signs of Ce (II) or Ce (IV) states were observed in the LBS-XANES. Ce L(γ4) RIXS was measured at 302 K and 28 K with excitation energies across the Ce L(1)-edge. The interactions of p-valence electrons between Ce and B(6) were found to be considerably small, regardless of temperature. Thus, the electronic state of CeB(6) was concluded to be suitably described as a nominally Ce(4f(1))(3+)(e(-))(B(6))(2-) system with some hybridization among all valence orbitals of Ce and B.