We theoretically analyze a high-efficiency single-frequency Brillouin all-fiber ring laser at 1.5 m wavelength, taking pump depletion into account. The output pump and Stokes intensities are calculated as functions of the cavity coupling coefficient and of the input pump intensity. Lasing threshold and pump-to-Stokes conversion efficiency are predicted. Furthermore, we demonstrate good agreement between model results and measurements. Applications to the improvement of optoelectronic links for radio-frequency signals by use of stimulated Brillouin scattering fiber lasers are also presented.