Significant progress has been made in recent years on the development of gravitational wave detectors. Sources such as coalescing compact binary systems, low-mass X-ray binaries, stellar collapses and pulsars are all possible candidates for detection. The most promising design of gravitational wave detector uses test masses a long distance apart and freely suspended as pendulums on Earth or in drag-free craft in space. The main theme of this review is a discussion of the mechanical and optical principles used in the various long baseline systems being built around the world — LIGO (USA), VIRGO (Italy/France), TAMA 300 (Japan) and GEO 600 (Germany/UK) — and in LISA, a proposed space-borne interferometer.