Cytochromes P450 of the CYP2C and CYP4A gene subfamilies metabolize arachidonic acid to 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acids (EETs) and to 19-and 20-hydroxyeicosatetraenoic acids (HETEs), respectively. Abundant functional studies indicate that EETs and HETEs display powerful and often opposing biological activities as mediators of ion channel activity and regulators of vascular tone and systemic blood pressures. Incubation of 8,9-, 11,12-, and 14,15-EETs with microsomal and purified forms of rat CYP4A isoforms led to rapid NADPH-dependent metabolism to the corresponding 19-and 20-hydroxylated EETs. Comparisons of reaction rates and catalytic efficiency with those of arachidonic and lauric acids showed that EETs are one of the best endogenous substrates so far described for rat CYP4A isoforms. CYP4A1 exhibited a preference for 8,9-EET, whereas CYP4A2, CYP4A3, and CYP4A8 preferred 11,12-EET. In general, the closer the oxido ring is to the carboxylic acid functionality, the higher the rate of EET metabolism and the lower the regiospecificity for the EET -carbon. Analysis of cis-parinaric acid displacement from the ligand-binding domain of the human peroxisome proliferator-activated receptor-␣ showed that -hydroxylated 14,15-EET bound to this receptor with high affinity (K i ؍ 3 ؎ 1 nM). Moreover, at 1 M, the -alcohol of 14,15-EET or a 1:4 mixture of the -alcohols of 8,9-and 11,12-EETs activated human and mouse peroxisome proliferator-activated receptor-␣ in transient transfection assays, suggesting a role for them as endogenous ligands for these orphan nuclear receptors.Cytochromes P450 of the CYP4A gene subfamily are structurally and functionally conserved fatty-acid hydroxylases that are expressed in most mammalian tissues, including rat and human kidney and liver (1-7). These enzymes are selective for the /-1-hydroxylation of saturated and unsaturated fatty acids (1-7) and lack known roles in drug metabolism. The expression of some CYP4A isoforms is under the control of the peroxisome proliferator-activated receptor-␣ (PPAR␣) 1 (8 -13) and regulated by a variety of physiological and pathophysiological stimuli, including dietary fatty acids, hormones, diabetes, and starvation (9 -13). Interest in the molecular and functional properties of these enzymes has been stimulated by the demonstration of their role in the /-1-hydroxylation of arachidonic acid (AA) (4 -7) and the powerful biological activities of 19-and 20-hydroxyeicosatetraenoic acids (HETEs) as modulators of renal ion fluxes and vasoactivity (14 -18). Based on biochemical and functional correlates of CYP4A renal expression, 20-HETE biosynthesis, and the onset of systemic high blood pressure in the SHR/WKY rat model of spontaneous hypertension, a pro-hypertensive role for 20-HETE and CYP4A isoforms was proposed (14).The cytochrome P450 AA epoxygenase catalyzes the in vivo regio-and enantioselective metabolism of AA to epoxyeicosatrienoic acids (EETs) (16). Studies with microsomal and/or purified cytochrome P450 preparations showed tha...