BACKGROUND
Natural language processing (NLP) is thought to be a promising solution to extract and store concepts from free text in a structured manner for data mining purposes. This is also true for radiology reports, which still consist mostly of free text. Accurate and complete reports are very important for clinical decision support, for instance, in oncological staging. As such, NLP can be a tool to structure the content of the radiology report, thereby increasing the report’s value.
OBJECTIVE
This study describes the implementation and validation of an N-stage classifier for pulmonary oncology. It is based on free-text radiological chest computed tomography reports according to the tumor, node, and metastasis (TNM) classification, which has been added to the already existing T-stage classifier to create a combined TN-stage classifier.
METHODS
SpaCy, PyContextNLP, and regular expressions were used for proper information extraction, after additional rules were set to accurately extract N-stage.
RESULTS
The overall TN-stage classifier accuracy scores were 0.84 and 0.85, respectively, for the training (N=95) and validation (N=97) sets. This is comparable to the outcomes of the T-stage classifier (0.87-0.92).
CONCLUSIONS
This study shows that NLP has potential in classifying pulmonary oncology from free-text radiological reports according to the TNM classification system as both the T- and N-stages can be extracted with high accuracy.