Most of the biomedical
materials printed using 3D bioprinting are
static and are unable to alter/transform with dynamic changes in the
internal environment of the body. The emergence of four-dimensional
(4D) printing addresses this problem. By preprogramming dynamic polymer
materials and their nanocomposites, 4D printing is able to produce
the desired shapes or transform functions under specific conditions
or stimuli to better adapt to the surrounding environment. In this
review, the current and potential applications of 4D-printed materials
are introduced in different aspects of the biomedical field, e.g.,
tissue engineering, drug delivery, and sensors. In addition, the existing
limitations and possible solutions are discussed. Finally, the current
limitations of 4D-printed materials along with their future perspective
are presented to provide a basis for future research.