Wedge splitting test gained popularity as a stable and simple method to predict the fracture mechanism properties of concrete specimens. The present research focuses on understanding the behavior of self-compacting concrete specimens made with and without steel fibers tested using wedge splitting test, later scanned under high resolution computed tomography. The contribution of hooked end steel fiber and coarse aggregates in fiber reinforced specimens was compared without steel fiber reinforced concrete specimens using high resolution computed tomography. As fracture takes place across the plane perpendicular to the splitting force, i.e. along the depth of specimens. High resolution computed tomography technique was adopted in visualizing the changes taking place across the matrix, coarse aggregate and steel fibers, along with the specimen's depth. Datasets of the images, obtained from computed tomography, after images analysis and volume reconstruction, revealed a higher coarse aggregate and steel fiber participation in the failure region of without and with fibers specimens. Computed tomography investigation indicated a total of 23 coarse aggregate and 64 steel fibers participated in resisting the failure, during wedge splitting test of without and with fibers specimens. Therefore, high resolution computed tomography can be used in understanding, quantifying the participation of coarse aggregate and steel fiber in the failure plane, under fracture loads.