Quantifying the benefit of early antibiotic treatment is crucial for decision making and can be assessed only in observational studies. We performed a systematic review of prospective studies reporting the effect of appropriate empirical antibiotic treatment on all-cause mortality among adult inpatients with sepsis. Two reviewers independently extracted data. Risk of bias was assessed using the Newcastle-Ottawa score. We calculated unadjusted odds ratios (ORs) with 95% confidence intervals for each study and extracted adjusted ORs, with variance, methods, and covariates being used for adjustment. ORs were pooled using random-effects meta-analysis. We examined the effects of methodological and clinical confounders on results through subgroup analysis or mixed-effect meta-regression. Seventy studies were included, of which 48 provided an adjusted OR for inappropriate empirical antibiotic treatment. Inappropriate empirical antibiotic treatment was associated with significantly higher mortality in the unadjusted and adjusted comparisons, with considerable heterogeneity occurring in both analyses (I 2 > 70%). Study design, time of mortality assessment, the reporting methods of the multivariable models, and the covariates used for adjustment were significantly associated with effect size. Septic shock was the only clinical variable significantly affecting results (it was associated with higher ORs). Studies adjusting for background conditions and sepsis severity reported a pooled adjusted OR of 1.60 (95% confidence interval ؍ 1.37 to 1.86; 26 studies; number needed to treat to prevent one fatal outcome, 10 patients [95% confidence interval ؍ 8 to 15]; I 2 ؍ 46.3%) given 34% mortality with inappropriate empirical treatment. Appropriate empirical antibiotic treatment is associated with a significant reduction in all-cause mortality. However, the methods used in the observational studies significantly affect the effect size reported. Methods of observational studies assessing the effects of antibiotic treatment should be improved and standardized.Sepsis affects 1.1 to 2.4 per 1,000 people per year and 20 to 42% of these patients die in hospital, with these rates probably underestimating the contribution of hospital-acquired infections (3, 16, 61). Septicemia and pneumonia combined are the sixth most common causes of death in the United States (36). Antibiotic treatment for the first 24 to 48 h is largely empirical (i.e., provided without evidence on the causative pathogen or its susceptibilities), and it is common wisdom that appropriate empirical antibiotic treatment (i.e., matching the in vitro susceptibilities of the isolated pathogens) reduces mortality. Physicians thus strive to achieve appropriate empirical antibiotic treatment for inpatients with suspected infections, and many times this is at the cost of administering superfluous and unnecessary antibiotics. Such treatment is associated with resistance development (83, 97) and side effects with no benefit.Estimates of the potential benefit of appropriate em...