5. Efficient Higher Order Time Discretization Schemes For Hamilton–Jacobi–Bellman Equations Based On Diagonally Implicit Symplectic Runge–Kutta Methods
Abstract:We consider a semi-Lagrangian approach for the computation of the value function of a Hamilton-Jacobi-Bellman equation. This problem arises when one solves optimal feedback control problems for evaluationary partial differential equations. A time discretization with Runge-Kutta methods leads in general to a complexity of the optimization problem for the control which is exponential in the number of stages of the time scheme. Motivated by this, we introduce a time discretization based on Runge-Kutta composition… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.