DNA hydroxymethylation and its mediated DNA demethylation are critical for multiple cellular processes, for example, nuclear reprogramming, embryonic development, and many diseases. Here, we demonstrate that a vital nutrient ascorbic acid (AA), or vitamin C (Vc), can directly enhance the catalytic activity of Tet dioxygenases for the oxidation of 5-methylcytosine (5mC). As evidenced by changes in intrinsic fluorescence and catalytic activity of Tet2 protein caused by AA and its oxidation-resistant derivatives, we further show that AA can uniquely interact with the C-terminal catalytic domain of Tet enzymes, which probably promotes their folding and/or recycling of the cofactor Fe 2+ . Other strong reducing chemicals do not have a similar effect. These results suggest that AA also acts as a cofactor of Tet enzymes. In mouse embryonic stem cells, AA significantly increases the levels of all 5mC oxidation products, particularly 5-formylcytosine and 5-carboxylcytosine (by more than an order of magnitude), leading to a global loss of 5mC (∼40%). In cells deleted of the Tet1 and Tet2 genes, AA alters neither 5mC oxidation nor the overall level of 5mC. The AA effects are however restored when Tet2 is re-expressed in the Tet-deficient cells. The enhancing effects of AA on 5mC oxidation and DNA demethylation are also observed in a mouse model deficient in AA synthesis. Our data establish a direct link among AA, Tet, and DNA methylation, thus revealing a role of AA in the regulation of DNA modifications.
■ INTRODUCTIONDNA demethylation remarkably contributes to the dynamics of the epigenetic marker 5-methylcytosine (5mC) in mammals and is critical for multiple biological processes, including animal cloning, 1 nuclear reprogramming, 2,3 development, 4−8 and highly locus-specific regulation of gene activities. 9−11 DNA demethylation can be initiated by the oxidation of 5mC and the formation of 5-hydroxymethylcytosine (5hmC), which are catalyzed by ten eleven translocation (Tet) family dioxygenases. 12−15 The formed 5hmC can be diluted by DNA replication, suggesting a passive DNA demethylation pathway. 16 Moreover, the 5hmC can be further oxidized by Tet proteins to form 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC), which can be excised by thymine DNA glycosylase (TDG) followed by the reintroduction of unmethylated cytosine through the base-excision repair (BER) pathway. 14,15 This important pathway for active DNA demethylation has been thought to be involved in a number of prominent biological processes. 5,6,10,11 Early and recent studies suggested that active and replication-independent DNA demethylation might be a rapid process. 10,11 The radically altered methylation, as observed in replication-independent demethylation of the paternal genome in zygotes, may complete within hours. 5,6,17−19 However, the observed levels of the active DNA demethylation intermediates, 5fC and 5caC in the cultured cells, were 100-fold less than the primary product 5hmC. 13−15,20−22 Biochemically, the Tet-mediated DNA dem...