Flavonoids are a class of metabolites found in many plant species. They have been reported to serve several physiological roles, such as in defense against herbivores and pathogens and in protection against harmful ultraviolet radiation. They also serve as precursors of pigment compounds found in flowers, leaves, and seeds. Highly methylated, nonglycosylated derivatives of the flavonoid myricetin flavonoid, have been previously reported from a variety of plants, but O-methyltransferases responsible for their synthesis have not yet been identified. Here, we show that secreting glandular trichomes (designated types 1 and 4) and storage glandular trichomes (type 6) on the leaf surface of wild tomato (Solanum habrochaites accession LA1777) plants contain 3,7,3#-trimethyl myricetin, 3,7,3#,5#-tetramethyl myricetin, and 3,7,3#,4#,5#-pentamethyl myricetin, with gland types 1 and 4 containing severalfold more of these compounds than type 6 glands and with the tetramethylated compound predominating in all three gland types. We have also identified transcripts of two genes expressed in the glandular trichomes and showed that they encode enzymes capable of methylating myricetin at the 3# and 5# and the 7 and 4# positions, respectively. Both genes are preferentially expressed in secreting glandular trichome types 1 and 4 and to a lesser degree in storage trichome type 6, and the levels of the proteins they encode are correspondingly higher in types 1 and 4 glands compared with type 6 glands.