Chemical cross-linkage of the positively charged viologen N-methyl-K-(aminopropyl)-4-4'-bipyridinium dibromide (APMV) to the enzyme ferredoxin-NADP' reductase from the cyanobacterium Anabaenu PCC 71 19 has been performed using the carbodiimide 1 -ethyl[3-(3-dimethylaminopropyl)]carbodiimide. 0.5-1 mol, depending on the preparation, is introduced for each mol enzyme. The residue involved in the covalent linkage with the viologen, Glu139, has been identified using HPLC separation of the modified proteolytic peptides and subsequent sequencing. Modification of the enzyme changes its catalytic specificity since it is able to react directly with oxygen; this is observed by a high NADPH oxidase activity, which is completely absent in the native enzyme. More important, this new enzymic activity is indicative of the intramolecular electron transfer between the natural redox cofactor FAD and the artificially introduced viologen. Electrons can also flow in the reverse direction, from the viologen to the FAD group, then to NADP', when the reaction is performed using glassy-carbon electrodes to reduce the viologen. Cyclic voltammetry experiments have shown that there is a small catalytic current between the electrode and the enzyme which is not observed in the native enzyme.