Search citation statements
Paper Sections
Citation Types
Publication Types
Relationship
Authors
Journals
Ferroelectric materials have technological applications in information storage and electronic devices. The ferroelectric polar phase can be controlled with external fields, chemical substitution and sizeeffects in bulk and ultrathin film form, providing a platform for future technologies and for exploratory research. In this work, we integrate spin-polarized density functional theory (DFT) calculations, crystal structure databases, symmetry tools, workflow software, and a custom analysis toolkit to build a library of known, previously-proposed, and newly-proposed ferroelectric materials. With our automated workflow, we screen over 67,000 candidate materials from the Materials Project database to generate a dataset of 255 ferroelectric candidates, and propose 126 new ferroelectric materials. We benchmark our results against experimental data and previous first-principles results. The data provided includes atomic structures, output files, and DFT values of band gaps, energies, and the spontaneous polarization for each ferroelectric candidate. We contribute our workflow and analysis code to the opensource python packages atomate and pymatgen so others can conduct analogous symmetry driven searches for ferroelectrics and related phenomena. references Scientific Data | (2020) 7:72 | https://doi.
Ferroelectric materials have technological applications in information storage and electronic devices. The ferroelectric polar phase can be controlled with external fields, chemical substitution and sizeeffects in bulk and ultrathin film form, providing a platform for future technologies and for exploratory research. In this work, we integrate spin-polarized density functional theory (DFT) calculations, crystal structure databases, symmetry tools, workflow software, and a custom analysis toolkit to build a library of known, previously-proposed, and newly-proposed ferroelectric materials. With our automated workflow, we screen over 67,000 candidate materials from the Materials Project database to generate a dataset of 255 ferroelectric candidates, and propose 126 new ferroelectric materials. We benchmark our results against experimental data and previous first-principles results. The data provided includes atomic structures, output files, and DFT values of band gaps, energies, and the spontaneous polarization for each ferroelectric candidate. We contribute our workflow and analysis code to the opensource python packages atomate and pymatgen so others can conduct analogous symmetry driven searches for ferroelectrics and related phenomena. references Scientific Data | (2020) 7:72 | https://doi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.