The transient squeezing flow of a magneto-micropolar biofluid in a noncompressible porous medium intercalated between two parallel plates in the presence of a uniform strength transverse magnetic field is investigated. The partial differential equations describing the two-dimensional flow regime are transformed into nondimensional, nonlinear coupled ordinary differential equations for linear and angular momentum (micro-inertia). These equations are solved using the robust Homotopy Analysis Method (HAM) and also numerical shooting quadrature. Excellent correlation is achieved. The influence of magnetic field parameter (Ha) , micropolar spin gradient viscosity parameter (Γ) and unsteadiness parameter (S) on linear and angular velocity (micro-rotation) are presented graphically, for specified values of the micropolar vortex viscosity parameter (R), Darcy number (Da i.e. permeability parameter) and medium porosity parameter (ε). Increasing magnetic field (Ha) serves to decelerate both the linear and angular velocity i.e. enhances lubrication. The excellent potential of HAM in bio-lubrication flows is highlighted.