Micro-light-emitting diodes (Micro-LEDs) are a new type of display device based on the third-generation semiconductor gallium nitride (GaN) material which stands out for its high luminous efficiency, elevated brightness, short response times, and high reliability. The contact between anode layers and P-GaN is one of the keys to improving the performance of the devices. This study investigates the impact of electrode structure design and optimized annealing conditions on the anode contact performance of devices. The Micro-LED device with the size of 9.1 μm whose electrode structure is ITO/Ti/Al/Ni/Cr/Pt/Au (100/50/350/100/500/500/5000 Å) exhibits a significant improvement in contact performance after annealing under the Ar gas atmosphere at 500 °C for 5 min. The optimized device exhibited a current of 10.9 mA and a brightness of 298,628 cd/m2 under 5 V. The EQE peak value of Device A is 10.06% at 400 mA.