To facilitate studies on establishing the nature of structure/function relationships of allergens, ryegrass pollen allergen, Lol p IV, was cleaved into smaller fragments by cyanogen bromide (CNBr) and the resulting peptides were further digested with trypsin. The resulting peptides were then fractionated by high performance liquid chromatography (HPLC) on a C-18 reverse phase column. The allergenic activity of the HPLC fractions was evaluated in terms of their ability to inhibit the binding of 125l-Lol p IV to serum IgE antibodies of a grass-allergic patient. Many of these fractions inhibited the binding between the native allergen and IgE antibodies in a dose-dependent manner. The inhibitions were specific, i.e., the fractions did not inhibit the binding between 125l-Lol p I (a group-I ryegrass pollen allergen) and the IgE antibodies present in the allergic human serum. The possibility that the allergenic peptide fractions were contaminated by the native undegraded allergen, which might have accounted for the observed inhibition, was ruled out by the fact that the native allergen could not be detected by SDS-PAGE and the elution profiles of allergenically active peptides did not coincide with that of native allergen. One of the allergenic sites recognized by monoclonal antibody (Mab) 90, i.e., site A, was located in HPLC fractions 90–100 while another allergenic site B (recognized by Mab 12) appeared to be lost following the sequential digestion of Lol p IV with CNBr and trypsin.