Nuclear transfer (NT) experiments in mammals have demonstrated that adult cells are genetically equivalent to early embryonic cells and the reversal of the differentiated state of a cell to another that has characteristics of the undifferentiated embryonic state can be defined as nuclear reprogramming. The feasibility of interspecies somatic cell NT (iSCNT) has been demonstrated by blastocyst formation and the production of offspring in a number of studies. Embryo and oocyte availability is a major limiting factor in conducting NT to obtain, blastocysts for both reproductive NT studies in genetically endangered animals and in embryonic stem cell derivation for species such as the horse and human. One approach to generate new embryonic stem cells in human as disease models, or in species where embryos and oocytes are not widely available, is to use oocytes from another species. Utilization of oocytes for recipient cytoplasts from other species that are accessible and abundant, such as the cow and rabbit, would greatly benefit ongoing research on reprogramming and stem cell sciences. The use of iSCNT is an exciting possibility for species with limited availability of oocytes as well as for endangered or exotic species where assisted reproduction is needed. However, the mechanisms involved in nuclear reprogramming by the oocyte are still unknown and the extent of the "universality" of ooplasmic reprogramming of development remains under investigation.