Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Per-and polyfluoroalkyl substances (PFAS), specifically perfluorooctanesulfonate (PFOS) and its alternative, 2- [(6-chloro-1,1,2,2,3,3,4,4,5,5,6,6-dodecafluorohexyl)oxy]-1,1,2,2tetrafluoroethanesulfonic acid (6:2 Cl-PFESA), are associated with environmental health concerns and potential cancer progression. However, their impact on multidrug resistance (MDR) in pancreatic cancer (PC) chemotherapy remains unclear. Here, we employed drug-sensitivity assays, including IC 50 calculations, in vitro and in vivo models with various chemotherapeutics, and paclitaxel (PTX) as a representative agent, combined with transcriptomic/proteomic sequencing and clinical prognostic analysis, to identify MDR-related genes and validate their relevance, with the objective of establishing the correlation between PFOS/6:2 Cl-PFESA exposure and MDR in PC at molecular, cellular, and animal model levels. Our findings demonstrate that PFOS/6:2 Cl-PFESA exposure increases the drug IC 50 in three different PC cell lines for various chemotherapeutic agents. Compared with PFOS, 6:2 Cl-PFESA demonstrated a more pro-MDR effect on PC cells in vitro. In vivo experiments further revealed that PFOS/6:2 Cl-PFESA exposures significantly reduced the efficacy of PTX in PC, with inhibition rates dropping from 78.3% to 23.8%/6.1%, respectively (p < 0.05). This effect was driven by the aberrant activation of the PI3K−ABCB1 pathway, with 6:2 Cl-PFESA demonstrating a stronger capacity to promote this signal pathway's expression and function compared with PFOS. These data suggest that exposure to PFAS may elevate the risk of MDR and subsequent disease progression. Although marketed as a safer alternative to PFOS, the notable impact of 6:2 Cl-PFESA on MDR highlights the necessity for a comprehensive assessment of its potential carcinogenic risks.
Per-and polyfluoroalkyl substances (PFAS), specifically perfluorooctanesulfonate (PFOS) and its alternative, 2- [(6-chloro-1,1,2,2,3,3,4,4,5,5,6,6-dodecafluorohexyl)oxy]-1,1,2,2tetrafluoroethanesulfonic acid (6:2 Cl-PFESA), are associated with environmental health concerns and potential cancer progression. However, their impact on multidrug resistance (MDR) in pancreatic cancer (PC) chemotherapy remains unclear. Here, we employed drug-sensitivity assays, including IC 50 calculations, in vitro and in vivo models with various chemotherapeutics, and paclitaxel (PTX) as a representative agent, combined with transcriptomic/proteomic sequencing and clinical prognostic analysis, to identify MDR-related genes and validate their relevance, with the objective of establishing the correlation between PFOS/6:2 Cl-PFESA exposure and MDR in PC at molecular, cellular, and animal model levels. Our findings demonstrate that PFOS/6:2 Cl-PFESA exposure increases the drug IC 50 in three different PC cell lines for various chemotherapeutic agents. Compared with PFOS, 6:2 Cl-PFESA demonstrated a more pro-MDR effect on PC cells in vitro. In vivo experiments further revealed that PFOS/6:2 Cl-PFESA exposures significantly reduced the efficacy of PTX in PC, with inhibition rates dropping from 78.3% to 23.8%/6.1%, respectively (p < 0.05). This effect was driven by the aberrant activation of the PI3K−ABCB1 pathway, with 6:2 Cl-PFESA demonstrating a stronger capacity to promote this signal pathway's expression and function compared with PFOS. These data suggest that exposure to PFAS may elevate the risk of MDR and subsequent disease progression. Although marketed as a safer alternative to PFOS, the notable impact of 6:2 Cl-PFESA on MDR highlights the necessity for a comprehensive assessment of its potential carcinogenic risks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.