Long-range sub-GHz technologies such as LoRaWAN, SigFox, IEEE 802.15.4, and DASH7 are increasingly popular for academic research and daily life applications. However, especially in the European Union (EU), the use of their corresponding frequency bands are tightly regulated, since they must confirm to the short-range device (SRD) regulations. Regulations and standards for SRDs exist on various levels, from global to national, but are often a source of confusion. Not only are multiple institutes responsible for drafting legislation and regulations, depending on the type of document can these rules be informational or mandatory. Regulations also vary from region to region; for example, regulations in the United States of America (USA) rely on electrical field strength and harmonic strength, while EU regulations are based on duty cycle and maximum transmission power. A common misconception is the presence of a common 1% duty cycle, while in fact the duty cycle is frequency band-specific and can be loosened under certain circumstances. This paper clarifies the various regulations for the European region, the parties involved in drafting and enforcing regulation, and the impact on recent technologies such as SigFox, LoRaWAN, and DASH7. Furthermore, an overview is given of potential mitigation approaches to cope with the duty cycle constraints, as well as future research directions. more and more relevant. For example, LoRa duty cycle limitations already impacts, among others, the throughput of the downlink communication, the (un)availability of acknowledgements, the feasibility of over the air firmware upgrades, geolocation inaccuracies, and scalability [1][2][3][4]. Several models predict that the probability of duty cycle violations during downlink communication will further increase, up to 20% for SigFox and 15% for LoRaWAN [5]. Similar impacts are expected for other technologies operating in sub-GHz radio frequency bands.However, despite the large impact of these regulations, many researchers are unaware of the exact limits and are not aware of mitigation techniques they can apply. Various institutes have each implemented regulations on the availability of radio spectrum for SRDs and their usage restrictions. This fragmentation causes confusion and misconceptions for researchers and manufacturers alike.