Propofol, a generally used anaesthetic in patients care, has been proven to induce neurotoxicity. Studies have shown that miR-363-3p was closely related to neurological dysfunction, and the up-regulated miR-363-3p was recognized to be participate in propofol-induced neurotoxicity. However, the mechanisms and functions of miR-363-3p in propofol-induced neurotoxicity remain rarely reported. The aim of our research was to clarify the potential effects of miR-363-3p in neurotoxicity induced by propofol. SH-SY5Y cells were treated with propofol, miR-363-3p inhibitor or sh-CREB. quantitative real-time polymerase chain reaction and western blotting were applied to detect the expression of miR-363-3p, CREB, Bax, Bcl-2, cleaved caspase-9 and cleaved caspase-3 at the mRNA and/or protein level, respectively. The levels of lactate dehydrogenase (LDH), superoxide dismutase (SOD) and malondialdehyde (MDA) in cell supernatant were detected using different kits. Flow cytometry and MTT assay were applied for assessing the functions of miR-363-3p and CREB on cell ability in cellular activity and apoptotic rate. In addition, Bioinformatic analysis and luciferase assay verified the relationship between 3 0-UTR of CREB and miR-363-3p. Our data indicated that the cell viability decreased with the increasing propofol concentration. Bioinformatic analysis and luciferase assay suggested that 3 0-UTR of transcript of CREB might be a binding site of miR-363-3p, and miR-363-3p could negatively regulate the expression of CREB. The changes in reactive oxygen species, LDH, SOD and MDA suggested that propofol mediates oxidative stress and apoptosis via modulating miR-363-3p/CREB axis. Propofol induces oxidative stress and apoptosis via affecting miR-363-3p/CREB axis in SH-SY5Y cells, suggesting miR-363-3p down-regulation may act as a novel strategy to ameliorate the propofol-induced neurotoxicity. Significance of the study: The present study demonstrated that propofol induces oxidative stress and apoptosis via affecting miR-363-3p/CREB axis in SH-SY5Y cells, suggesting miR-363-3p down-regulation may act as a novel strategy to ameliorate the propofol-induced neurotoxicity.