Heme oxygenases (HO) catalyze the breakdown of heme, aiding the recycling of its components. Several other enzymes have homologous tertiary structures to HOs, while sharing little sequence homology. These homologues include thiaminases, the hydroxylase component of methane monooxygenases, and the R2 component of Class I ribonucleotide reductases (RNR). This study compared these structural homologues of HO, using a large number of protein sequences for each homologue. Alignment of a total of 472 sequences showed little sequence conservation, with no residues having conservation in more than 80% of aligned sequences and only five residues conserved in at least 60% of the sequences. Fourteen additional positions, most of which were critical for hydrophobic packing, displayed amino acid similarity of 60% or higher. Ten conserved sequence motifs were identified in HOs and RNRs. Phylogenetic analysis verified the existence of the four distinct groups of HO homologues, which were then analyzed by group entropy analysis to identify residues critical to the unique function of each enzyme. Other methods for determining functional residues were also performed. Several common index positions identified represent critical evolutionary changes that resulted in the unique function of each enzyme, suggesting potential targets for site‐directed mutagenesis. These positions included residues that coordinate ligands, form the active sites, and maintain enzyme structure.
Enzymes
Heme oxygenase (http://www.chem.qmul.ac.uk/iubmb/enzyme/EC1/14/14/18.html), methane monooxygenase (http://www.chem.qmul.ac.uk/iubmb/enzyme/EC1/14/13/25.html), ribonucleotide reductase (http://www.chem.qmul.ac.uk/iubmb/enzyme/EC1/17/4/1.html), thiaminase II (http://www.chem.qmul.ac.uk/iubmb/enzyme/EC3/5/99/2.html).